Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449333

RESUMO

In Developmental Plasticity and Evolution, Mary-Jane West-Eberhard argued that the developmental mechanisms that enable organisms to respond to their environment are fundamental causes of adaptation and diversification. Twenty years after publication of this book, this once so highly controversial claim appears to have been assimilated by a wealth of studies on 'plasticity-led' evolution. However, we suggest that the role of development in explanations for adaptive evolution remains underappreciated in this body of work. By combining concepts of evolvability from evolutionary developmental biology and quantitative genetics, we outline a framework that is more appropriate to identify developmental causes of adaptive evolution. This framework demonstrates how experimental and comparative developmental biology and physiology can be leveraged to put the role of plasticity in evolution to the test.


Assuntos
Evolução Biológica , Biologia
2.
J Phycol ; 60(2): 418-431, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38196398

RESUMO

With the ongoing differential disruption of the biogeochemical cycles of major elements that are essential for all life (carbon, nitrogen, and phosphorus), organisms are increasingly faced with a heterogenous supply of these elements in nature. Given that photosynthetic primary producers form the base of aquatic food webs, impacts of changed elemental supply on these organisms are particularly important. One way that phytoplankton cope with the differential availability of nutrients is through physiological changes, resulting in plasticity in macromolecular and elemental biomass composition. Here, we assessed how the green alga Chlamydomonas reinhardtii adjusts its macromolecular (e.g., carbohydrates, lipids, and proteins) and elemental (C, N, and P) biomass pools in response to changes in growth rate and the modification of resources (nutrients and light). We observed that Chlamydomonas exhibits considerable plasticity in elemental composition (e.g., molar ratios ranging from 124 to 971 for C:P, 4.5 to 25.9 for C:N, and 15.1 to 61.2 for N:P) under all tested conditions, pointing to the adaptive potential of Chlamydomonas in a changing environment. Exposure to low light modified the elemental and macromolecular composition of cells differently than limitation by nutrients. These observed differences, with potential consequences for higher trophic levels, included smaller cells, shifts in C:N and C:P ratios (due to proportionally greater N and P contents), and differential allocation of C among macromolecular pools (proportionally more lipids than carbohydrates) with different energetic value. However, substantial pools of N and P remained unaccounted for, especially at fast growth, indicating accumulation of N and P in forms we did not measure.


Assuntos
Chlamydomonas reinhardtii , Clorófitas , Chlamydomonas reinhardtii/metabolismo , Clorófitas/metabolismo , Fotossíntese , Carboidratos , Lipídeos , Nitrogênio/metabolismo , Fósforo/metabolismo
3.
Ecol Lett ; 25(10): 2324-2339, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36089849

RESUMO

The growth rate hypothesis (GRH) posits that variation in organismal stoichiometry (C:P and N:P ratios) is driven by growth-dependent allocation of P to ribosomal RNA. The GRH has found broad but not uniform support in studies across diverse biota and habitats. We synthesise information on how and why the tripartite growth-RNA-P relationship predicted by the GRH may be uncoupled and outline paths for both theoretical and empirical work needed to broaden the working domain of the GRH. We found strong support for growth to RNA (r2  = 0.59) and RNA-P to P (r2  = 0.63) relationships across taxa, but growth to P relationships were relatively weaker (r2  = 0.09). Together, the GRH was supported in ~50% of studies. Mechanisms behind GRH uncoupling were diverse but could generally be attributed to physiological (P accumulation in non-RNA pools, inactive ribosomes, translation elongation rates and protein turnover rates), ecological (limitation by resources other than P), and evolutionary (adaptation to different nutrient supply regimes) causes. These factors should be accounted for in empirical tests of the GRH and formalised mathematically to facilitate a predictive understanding of growth.


Assuntos
Nitrogênio , Fósforo , Evolução Biológica , Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , RNA Ribossômico
4.
Proc Biol Sci ; 289(1974): 20220178, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538780

RESUMO

The human-caused proliferation of cyanobacteria severely impacts consumers in freshwater ecosystems. Toxicity is often singled out as the sole trait to which consumers can adapt, even though cyanobacteria are not necessarily toxic and the lack of nutritionally critical sterols in cyanobacteria is known to impair consumers. We studied the relative significance of toxicity and dietary sterol deficiency in driving the evolution of grazer resistance to cyanobacteria in a large lake with a well-documented history of eutrophication and oligotrophication. Resurrecting decades-old Daphnia genotypes from the sediment allowed us to show that the evolution and subsequent loss of grazer resistance to cyanobacteria involved an adaptation to changes in both toxicity and dietary sterol availability. The adaptation of Daphnia to changes in cyanobacteria abundance revealed a sterol-mediated gleaner-opportunist trade-off. Genotypes from peak-eutrophic periods showed a higher affinity for dietary sterols at the cost of a lower maximum growth rate, whereas genotypes from more oligotrophic periods showed a lower affinity for dietary sterols in favour of a higher maximum growth rate. Our data corroborate the significance of sterols as limiting nutrients in aquatic food webs and highlight the applicability of the gleaner-opportunist trade-off for reconstructing eco-evolutionary processes.


Assuntos
Cianobactérias , Esteróis , Animais , Cianobactérias/genética , Daphnia/genética , Ecossistema , Eutrofização , Lagos
5.
Sci Total Environ ; 829: 154675, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35314241

RESUMO

Using sodium chloride (NaCl) for de-icing roads is known to have severe consequences on freshwater organisms when washed into water bodies. N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, also known as 6PPD, is an antiozonant mainly found in automobile tire rubber to prevent ozone mediated cracking or wear-out. Especially the ozonated derivate, 6PPD-quinone, which is washed into streams after storm events, has been found to be toxic for coho salmon. Studies on other freshwater organisms could not confirm those findings, pointing towards distinct species-specific differences. Storm events result in greater run-offs from all water-soluble contaminants into freshwater bodies, potentially enhancing the concentrations of both chloride and 6PPD during winter. Here we show that these two contaminants have synergistic negative effects on the population growth of the rotifer Brachionus calyciflorus, a common freshwater herbivore. Hence, while only high concentrations of 6PPD and even higher concentrations of 6PPD-quinone, beyond environmentally relevant concentrations, had lethal effects on rotifers, the addition of NaCl enhanced the sensitivity of the rotifers towards the application of 6PPD so that their negative effects were more pronounced at lower concentrations. Similarly, 6PPD increased the lethal effect of NaCl. Our results support the species-specific toxicity of 6PPD and demonstrate a synergistic effect of the antiozonant on the toxicity of other environmentally relevant stressors, such as road salt contamination.


Assuntos
Cloreto de Sódio , Poluentes Químicos da Água , Herbivoria , Quinonas , Rios , Cloreto de Sódio/toxicidade , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Nat Commun ; 12(1): 1945, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782425

RESUMO

Exploring the capability of organisms to cope with human-caused environmental change is crucial for assessing the risk of extinction and biodiversity loss. We study the consequences of changing nutrient pollution for the freshwater keystone grazer, Daphnia, in a large lake with a well-documented history of eutrophication and oligotrophication. Experiments using decades-old genotypes resurrected from the sediment egg bank revealed that nutrient enrichment in the middle of the 20th century, resulting in the proliferation of harmful cyanobacteria, led to the rapid evolution of grazer resistance to cyanobacteria. We show here that the subsequent reduction in nutrient input, accompanied by a decrease in cyanobacteria, resulted in the re-emergence of highly susceptible Daphnia genotypes. Expression and subsequent loss of grazer resistance occurred at high evolutionary rates, suggesting opposing selection and that maintaining resistance was costly. We provide a rare example of reversed evolution of a fitness-relevant trait in response to relaxed selection.


Assuntos
Coevolução Biológica , Cianobactérias/patogenicidade , Daphnia/genética , Aptidão Genética , Poluição da Água/análise , Animais , Cianobactérias/fisiologia , Daphnia/crescimento & desenvolvimento , Daphnia/metabolismo , Europa (Continente) , Eutrofização , Genótipo , Humanos , Lagos/química , Fenótipo , Característica Quantitativa Herdável , Seleção Genética
7.
Sci Total Environ ; 769: 144657, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493914

RESUMO

Salinization of freshwater ecosystems is a growing hazard for organisms and ecosystem functioning worldwide. In northern latitudes, road salt that is being transported into water bodies can cause year-round increases in lake salinity levels. Exploring the environmental factors driving the susceptibility of freshwater zooplankton to road salt is crucial for assessing the impact of salinization on food web processes. We studied the role of essential lipids, i.e., sterols and long-chain polyunsaturated fatty acids (PUFAs), in mediating salt tolerance of the freshwater keystone herbivore Daphnia. Sterols and PUFAs are involved in regulating ion permeability of biological membranes and thus we hypothesized that the susceptibility to salt is affected by the dietary sterol and PUFA supply. Life history experiments revealed opposing effects of sterol and PUFA supplementation on salt tolerance, i.e., tolerance increased upon sterol supplementation but decreased upon PUFA supplementation, which is consistent with their proposed impact on membrane permeability. Our results suggest that the susceptibility of freshwater zooplankton to salinization strongly depends on the dietary lipid supply and thus the phytoplankton community composition. Hence, trophic state related differences in the phytoplankton community composition need to be considered when assessing the consequences of salinization for freshwater ecosystem functioning.


Assuntos
Ecossistema , Herbivoria , Animais , Daphnia , Tolerância ao Sal , Zooplâncton
8.
Ecol Evol ; 9(22): 12813-12825, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31788216

RESUMO

During past decades, many lakes underwent drastic human-caused changes in trophic state with strong implications for population dynamics and food web processes. We investigated the influence of trophic state on nutrient allocation into Daphnia resting eggs. The production of resting eggs is an important survival strategy, allowing Daphnia to cope with unfavorable environmental conditions. Allocation of essential nutrients into resting eggs may crucially influence embryonic development and offspring survival and thus is of great ecological and evolutionary interest. The capacity of Daphnia to adjust the allocation of nutrients into resting eggs may depend on the dietary nutrient supply, which may vary with trophic state-related changes in the phytoplankton community composition. Resting eggs were isolated from sediment cores taken from Lake Constance, a large prealpine lake with a distinct eutrophication and reoligotrophication history, and analyzed for elemental (carbon, nitrogen, and phosphorus) and biochemical (sterols and fatty acids) nutrients. Carbon allocation into Daphnia resting eggs continuously decreased over time, irrespective of changes in trophic state. The allocation of nitrogen into Daphnia resting eggs followed the changes in trophic state, that is, nitrogen concentrations in resting eggs increased with eutrophication and decreased again with reoligotrophication. The allocation of phosphorus, sterols and long-chain polyunsaturated fatty acids, such as eicosapentaenoic acid, into Daphnia resting eggs did not change significantly over time. Changes in trophic state strikingly influenced all trophic levels in Lake Constance. However, nutrient allocation into Daphnia resting eggs was mostly resilient to changes in lake trophic state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...